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LETTER TO THE EDITOR 

Critical behaviour of modulated phases in the chiral 
clock model 

M Siegert and H U Everts 
Institut fur Theoretische Physik, Universitat Hannover, Appelstrasse 2, 3000 Hannover, 
Federal Republic of Germany 

Received 12 May 1989 

Abstract. The critical properties of the modulated phases in the uniaxial chiral clock model 
in three dimensions are investigated by a renormalisation group ( R G )  calculation and a 
Monte Carlo study. From the RG calculation it follows that the model belongs to the XY 
universality class, i.e. that it scales isotropically at criticality in spite of its spatial anisotropy. 
Using the scaling properties of the fourth cumulant of the order parameter we devise a 
method by which one can discriminate between isotropic and anisotropic scaling quite 
generally in a numerical simulation. Our numerical results confirm the predictions of the 
RG calculation. 

In attempts to explain modulated phases in solids, two models have been studied 
extensively: the anisotropic next-nearest-neighbour Ising (ANNNI)  model (Elliot 1961) 
and the three-state chiral clock (cc3) model (Ostlund 1981, Huse 1981). While at low 
temperatures the basic features of these models are well understood (Selke and Duxbury 
1984, Fisher and Szpilka 1987, Szpilka and Fisher 1987, Siegert and Everts 1987) the 
situation is less clear near the critical temperature. In particular, for the cc3 model it 
is not known to which universality class the phase transition between modulated phases 
and the disordered state belongs. Figure 1 displays schematically the phase diagram 
of the cc3 model. Because of the spatial anisotropy of the interaction it is not clear 
a priori that the model scales isotropically at the critical temperature, i.e. it is not 
inconceivable that the correlation lengths and tl, respectively parallel and 

A 
Figure 1. Schematic phase diagram of the c C 3  model. The phase transition between the 
paramagnetic and the modulated phases is of second order; all other transition curves 
correspond to first-order transitions. The dotted lines indicate the A values where Monte 
Carlo simulations were carried out. 
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perpendicular to the axial direction of the model, diverge with different exponents: - t-”ll, t1 - t-”’.  In this article we present a renormalisation group calculation and 
a Monte Carlo study of the critical properties of the cc3 model in three dimensions. 

The three-state chiral clock model on a d-dimensional layered lattice is defined by 
the Hamiltonian 

H = -Jo C siasja - J C siaR(A)sia+, J O , J > O .  (1) 
a ( i J )  a i  

The subscript (Y labels the (d-1)-dimensional layers and i,j count the lattice sites 
within a layer, ( i , j )  denotes a nearest-neighbour p$r. The allowed spin states are 
Si, = (cos $”, sin j m i m ) ,  nia = 0, 1,2. The matrix R(A) rotates the spins through the 
angleZaA. The phase diagram of the cc3 model is symmetric to A = i; the corresponding 
phases are related by the symmetry operation 

A +  1 - A  + j m  - (2) 
where q is the wavenumber of the modulation. Within our numerical simulations we 
always set Jo= J. To construct a Ginzburg-Landau-Wilson (GLW) functional we start 
from a generalisation of the mean-field free energy: 

The first term resembles the Hamiltonian (1) and the potential V ( S ( r ) )  is an expansion 
of the mean-field entropy (Siegert and Everts 1985): 

(4) 
the third-order term reflects the three-state Potts symmetry of the model. The steps 
leading from equation (3) to the GLW functional are the same as in the Landau 
expansion of the mean-field free energy (Siegert and Everts 1985). We introduce the 
complex order parameter p ( r )  = SI ( r )  + is,( r )  and adopt the ansatz I(. (r) = 
A ( r )  exp(iqorll) + B ( r )  exp(-2iqorll). Here, qo denotes the wavenumber of the modu- 
lated phase, rll is the axial component of the position vector r and the amplitudes 
A( r), E( r )  are assumed to be slowly varying functions. In mean-field theory this ansatz 
suffices to calculate the free energy correctly up to sixth order in A(B = O(A2)),  thus 
no higher harmonics are needed. The second harmonic with amplitude B must be 
included, since it contributes in fourth order. Neglecting rapidly oscillating terms such 
as A3( r )  exp(3iqorll), taking the continuum limit and changing to the wavenumber 
representation, 

V ( S ( r ) )  = S2(r)  - ~ s , ( r > ( s : ( r ) - 3 S : ( r ) ) + ~ S 2 ( r ) ) 2 + .  . . 

etc, we arrive at the GLW Lagrangian 

9 = { [ iK0(2(d  - 1) - 4:) + K cos($rA - qo)( 1 -4qi )  - l ]A(q)A*(  - 4 )  

+[fK0(2(d - l)-q:)+ K COS($TA+~~O)(I  -+sf)- l ]E(q)B*( -q)}  

+ 4A ( 4 )  A* ( q ’) B ( q”)  E *( - q - q ’ - 4”) 
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A*(q), B * ( q )  are the Fourier transforms of the complex conjugates of A ( r ) ,  B ( r ) .  
Introducing the real fields U( r ) ,  T ( r ) ,  A( r )  = al( r )  + ia2( r ) ,  B( r )  = T ~ (  r )  + i ~ ~ (  r )  we 
obtain the following generalised GLW Lagrangian: 

uz( u ( 4 )  U ( 4 ’ ) )  ( T( 4”)  d --4 - 4’ - 4 ” ) )  

+tU~(~(4)~(4’))(~(4”)~(-4 - 4’ - 4 ” ) ) )  

r, = (2/ Ko)[l - ( d  - l )Ko- K cos($rA- so)]  

r, = (21 K O ) [  1 - ( d  - l )Ko - K c o s ( f ~ A  + 2qo)] 

K ,  = ( K /  K O )  COS($T - qo) K ,  = ( K / K o )  cos(~.rr+2q0). 

The new parameters 7, p, ul, u2,  u3 are allowed to deviate from their mean-field values 
under renormalisation. Since r, c r, the critical temperature is given as in mean-field 
theory (Siegert and Everts 1985) by r , = O ,  qO=$.rrA. The renormalisation group 
transformation for the functional ( 5 )  is performed in the same manner as for a 
metamagnet (Nelson and Fisher 1975). Firstly, we rescale the momentum variable qll 
to eliminate the anisotropy in the propagator of the U field. The effect is to replace 
K ,  by K , / K ,  =: K and setting K ,  = 1. After integrating over the outer momentum shell, 
rescaling the momentum by a factor b and the fields U and T by factors c, and c, 
respectively, one finds that, in order to obtain a Gaussian fixed point with r, = 0, r, > 0, 
the fields have to be rescaled differently, i.e. c, = bl+d’2, c, = bd’2. Then the parameters 
7, u2, u3 turn out to be irrelevant. Thus the anisotropy of the propagator of the T field 
drops out so that the scaling of the correlation lengths is indeed isotropic: vII = vL = v. 
One arrives at a reduced functional 
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which contains the T field only quadratically. Thus in the functional integral 
J n,BT(q)  e-y’=: e-y the T field can be integrated out, yielding a Lagrangian 

with U = U ,  - p 2 / r , .  From the Lagrangian ( 7 )  it follows that the phase transition of the 
modulated phases of the cc3 model belongs to the universality class of the three- 
dimensional X Y  model with critical exponents v = 0.670, y = 1.3 17, a = -0.01 (Le 
Guillon and Zinn-Justin 1980, Albert 1982). 

In the following we demonstrate how these results can be obtained by a Monte 
Carlo study. Since we shall employ finite-size extrapolations, we briefly review the 
finite-size scaling theory for anisotropic systems (see also Binder and Wang 1989). 
The starting point is the homogenity relation for the free energy 

“’f(br, b-”-L,, b-”iLIl)  (8) F = b-‘2- 

where b is an arbitrary scaling factor, t = T /  T, - 1 is the reduced temperature and cy 

is the specific heat exponent. In the present context LII is the length of the system 
along the chiral axis and L ,  is the linear dimension of the ferromagnetic layers 
perpendicular to this axis. vIl, v, are the possibly different exponents of the correlation 
length .$, 6, in these two directions. The derivatives of the free energy, such as the 
susceptibility or the specific heat, obey analogous scaling relations: 

(9) 
Setting b = Lily-  and defining z = Li‘”Il/ Li/”-, one sees that j depends only on L:’“-t 
and z 

(10) 
The shift E = 1 - T,( L , ,  Lli)/ T,, defined as the reduced temperature at the maximum 
of the susceptibility, i.e. kBT,,ymax = L : ’ ” ~ ~ ( L : / ” - E ,  1, z ) ,  is given by dx/drl,=, = O .  This 
yields 

ksTX = b Y f ( b t ,  b-‘L:’”-, b-‘L\”ll). 

ksTx = L:/”-f(Ll’L’lr,  1, z). 

E = L;’/”.T(Z). (11) 
In general, equation (1 1) cannot be used to extract the exponent v, (or equivalently 
VI,) from finite-size results as z itself depends on vi and vi, and the function ~ ( z )  is 
not known. One possibility is to take the anisotropic limit L ,  >> LIl  >> 1 (or L,, >> L,  >> 1) 
where one can approximate T(Z) by a constant. This method has been tested for the 
Ising model by Binder and Wang (1989) with the result that very large systems are 
required and the accuracy is very poor. 

A function which has proved to be very useful in Monte Carlo simulations is the 
reduced fourth-order cumulant U = 1 -(M4)/(3(M2)*) of the order parameter M, since 
this is a pure scaling function (Binder 1981, 1985, Binder and Wang 1989): 

(12) 

(13) 
If scaling is isotropic ( v l  = vII = v) then U is simply a function of the aspect ratio 
s = LII /L , ,  u ( T =  T,) = g’(s). In this case the graphs of u ( T )  for different values of L,  

U ( ? ,  L , ,  Ll,) = ii(L:/”-r, z )  
which at T = T, depends only on z: 

u(0, L,, L , / )  = a(0, z ) = :  g ( z ) .  
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but fixed value of s must intersect in the same point when T = T,.  Obviously, this is 
not the case if v, # vll. Monte Carlo results for U( T )  can thus be used to discriminate 
between isotropic and anisotropic scaling. 

In the simulation of the cc3 model we employed the standard Metropolis algorithm. 
Generally 4 x  lo5 Monte Carlo steps were used in the averaging procedure. As an 
order parameter we choose the first harmonic of the magnetisation 

where Ma = Z i S i a / L :  is the magnetisation of the a th  layer. Most calculations are 
done for A = since for this value of A the wavenumber of the stable modulated phase 
is known to be qo=$n owing to the symmetry relation (2). Note that for A = +  the 
model is equivalent to a metamagnetic Potts model with antiferromagnetic interactions 
in the axial direction and ferromagnetic interactions perpendicular to this direction. 
Figure 2 shows plots of the fourth cumulant U( T )  for two different values s = 1 and 
s = 2 of the aspect ratio. The two clearly distinguishable intersection points are located 
at exactly the same termperature, Tc/ J = 2.287 * 0.002. On account of the very high 
precision, the method discriminates very sensitively between isotropic and anisotropic 
scaling. 

Knowing that scaling is isotropic for the cc3 model, one can now proceed to 
extrapolate the critical exponents from finite-size results in the usual fashion: 

kgTcX = LZ’”,f(L:’”t, s) 
E = L;””?(s ) .  

1:x  Lll 

12 3 

18) 

243 

1Z2X 24 
9 * x 1 8  

1S2r 30 
18‘x 36 

2L2X 40 

Figure 2. Monte Carlo results for the fourth-order cumulant U, A = 0.5. The arrow indicates 
the critical temperature T,. 
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To determine the exponent U from the shift E, the value of i ( s )  in equation (156) is 
of crucial importance. Figure 3 shows Monte Carlo data for the specific heat and for 
the susceptibility (determined from the fluctuations of the energy and the order 
parameter) for s = 1 and s = 2. While, for s = 1 the shift is nearly zero and the data 
are useless for the determination of v, there is a pronounced shift for s = 2. From 
these data we obtain the results v = !* 0.02, a! = 0.0 k0.06, y = 1.28 rt 0.04. 

We conclude with a brief description of our Monte Carlo results for A # + .  At 
A = 0.3 the phase transition between the ferromagnetic and disordered states is clearly 
of first order. The maxima of the specific heat and the susceptibility diverge proportional 
to the volume L3 (we choose s = 1). For values of A slightly larger than A,,, the value 

3- 

2- 

2.2 2 3  
T N  ( b )  

T N  

Figure 3. Monte Carlo results for the susceptibility ,y and the specific heat c, A=O.5 ,  ( a )  
for aspect ratios s = 1, ( b )  for s = 2. 
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at the multicritical point, where ferromagnetic, disordered and modulated phases 
coexist, it is difficult to resolve the peaks originating from the ferromagnetic-modulated 
transition and the modulated-disordered transition. The former is a first-order transi- 
tion and exhibits strong hysteresis effects, thus the latter transition can only be studied 
within relatively short simulations (we use 2 X lo5 Monte Carlo steps), so that no 
transition from the modulated configuration to the metastable ferromagnetic state 
occurs. The wavenumber qo of the stable modulated phase is determined by studying 
small lattices with L, = 12, LII = 10,11, . . . , 15. At A = 0.36 we find qo=&r and from 
the susceptibility data for system sizes L, = Lii = n x 12, n = 1 ,2 ,3 ,  we obtain the 
exponent y /  Y = 1.95. This is surprisingly close to the XY value as one expects relatively 
large errors due to the proximity of the transition to the ferromagnetic state. The value 
of y / v  is clearly distinct from 3, which would obtain if the transition were of first 
order. Thus we find no indication for a first-order transition from modulated phases 
to the disordered state in contrast to the mean-field theory (Ottinger 1983, Siegert and 
Everts 1985), but in agreement with the Bethe approximation (Siegert and Everts 1987). 

We should like to thank W Selke for interesting discussions. Financial support from 
the Bundesministerium fur Forschung und Technologie is gratefully acknowledged. 
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sachsen, Hannover and at Konrad-Zuse-Zentrum fur Informationstechnik, Berlin. 
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